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Abstract

A device-free human counting (DFC) algorithm that uses fine-grained subcarrier informa-
tion from WiFi devices, called channel state information (CSI), to count the number of
people in indoor environments is proposed. The DFC algorithm extracts the features of
average attenuation and variation of CSI amplitudes caused by human motions, and puts
the features into a training process to improve the counting accuracy. Through a bootstrap-
ping process, the DFC can estimate the number of people standing in the middle of a WiFi
link by constructing a probability model with the CSI signals at a receiver side. With this
human counting capability, the DFC can support the efficient monitoring and automatic
control of electrical devices (e.g. air conditioner, heater, bulb, and beam projector) indoors.
Through a real implementation and experiments, it is shown that the DFC algorithm out-
performs the state-of-the-art DFC algorithm based on RSSI in indoor environments with
human mobility. For a dynamic-target case in a meeting room, for example, DFC can pre-
dict the number of people in an indoor space with an accuracy about 98% at best.

1 INTRODUCTION

Various research for smart buildings is being conducted all over
the world. Especially, human detection and counting is one of
the main purposes in management systems for smart buildings.
Most of these management systems require additional devices
and sensors (e.g. ultrasonic, infrared, and camera) to achieve
a high accuracy for human counting, which can raise the con-
struction costs of buildings. In addition, the smart buildings can
have different characteristics by their functions and locations
from either a smart campus or smart farm. To apply the man-
agement systems to these buildings, it is necessary to analyse
the characteristics first for a better performance. For example,
a campus building can have many lecture rooms, laboratories,
and administration offices, which are mainly used by students
and researchers. Most of the lecture rooms are dynamically
scheduled to have classes every semester. With an estimated
occupancy in a room, a management system can efficiently
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control facilities (e.g. air conditioners and light bulbs) to pro-
vide a better condition for people who are working and study-
ing in the room and save more energy as well. Human count-
ing technologies for smart buildings become one of the core
functions to provide such a kind of efficient management
systems [1–3].

Currently, infrared sensors-based systems are widely used to
detect human activity in indoor areas. As mentioned before,
these systems not only increase the construction costs, but also
may not detect humans correctly when persons stay still for a
certain time, which often happens when the persons are work-
ing on desktops. Other research using cameras and ultra wide-
band (UWB) bio-radar [2, 4] for human counting or sensing
have also been studied, but in these studies additional devices
are required to run the systems, and privacy concerns can
be raised, too. Alternatively, a system can obtain a good per-
formance to count the number of people by received signal
strength indicator (RSSI) data from a communication link of
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a WiFi transmitter and receiver [1]. However, RSSI amplitudes
can fluctuate severely when obstacles block a line-of-sight (LoS)
wireless link.

Systems using fine-grained subcarrier information from wire-
less links can localise and detect human motions [5]. These sys-
tems can provide useful schemes for indoor navigation, locali-
sation and motion detecting services. Particularly, the research
on channel state information (CSI) for human activity detec-
tion and localisation [6–10] has been spotlighted globally. The
raw CSI signals collected at the physical layer include noises
caused by signal scattering, fading, and reflections when a
WiFi signal propagates from a transmitter to a receiver. The
CSI signals carry much richer state information of the cur-
rent channel for data transmissions, which are critical for
many multi-channel wireless communication systems such as
WiFi to achieve a reliable and high data rate [11–13]. There-
fore, CSI signals can provide more information about the
environments where people are existing and moving, mak-
ing it more suitable for human counting in comparison with
RSSI data.

Here, we propose a device-free human counting (DFC) algo-
rithm based on the features of CSI data from WiFi devices in
an indoor environment. The DFC algorithm has two parts. The
first part is a feature extraction step based on a supervised learn-
ing technique. In this step, we extract features from CSI data by
observing influences of humans in a WiFi link, and compute
a two-dimensional probability distribution with a labelled data
set. The second part is a test step with an unlabelled data set.
In the test step, we extract features in the same way to the pre-
vious step, and compare the features of the unlabelled data set
with those of labelled data set using a probability distribution.
Finally, we estimate the number of people based on a structured
probabilistic modelling. For experiments on the DFC algorithm,
we use commercial off-the-shelf (COTS) devices such as Intel’s
network interface card (NIC).

This study gave the following contributions:

∙ An algorithm for DFC: This study proposes an algorithm to
estimate the number of people in a wireless link based on
fine-grained subcarrier information. The modelling of fine-
grained subcarrier information is performed in a link between
two WiFi devices (see Section 4).

∙ The characterisation of features from raw CSI signals: By
extracting features from fine-grained subcarrier information
from common WiFi devices, it is possible to count the num-
ber of people. These features are an average attenuation and
an average variation of CSI amplitudes, which are affected by
the number of people in the communication link (see Sec-
tions 4.2 and 4.3).

∙ The automatic control for electronic and electrical appli-
ances: By extending the DFC algorithm, the existence of
people in a room can be determined; and it is possible to
save power consumption by controlling the electric power of
unnecessary electrical appliances (see Section 3.1).

The remaining of this paper is structured as follows. Section 2
summarises and analyses the related work for human detecting,

localisation, and counting. Section 3 shows the problem formu-
lation of the DFC algorithm. Section 4 describes the design of
the DFC algorithm. Section 5 explains the testbed along with
hardware and software configuration. Section 6 evaluates the
performance and discusses the issues of the DFC algorithm.
Section 7 concludes this paper along with future work.

2 RELATED WORK

Most of the research related to human counting or sensing is
focused on the localisation or motion detection [9] of people
or user devices [6–8, 10]. Also, other human counting research
analyses signal in the WiFi communication link [1] and needs
additional devices such as camera or radar [2, 4].

Depatla et al. proposed an approach to estimate room occu-
pancy by WiFi power [1]. In their study, they estimated the num-
ber of people between a WiFi link with variation of RSSI sig-
nal. They computed the number of people by comparing an
ideal probability distribution and a probability distribution of
the analysis of change to RSSI signal [1, 14]. Similarly, the pro-
posed DFC is also based on a probability distribution by the
analysis of WiFi signal from a WiFi receiver. However, our anal-
ysis is based on the fine-grained subcarrier information, which
can achieve a high counting accuracy for both dynamic and
static targets.

Ma et al. presented a human counting system based on cam-
eras using extracted features [2]. They obtained a high counting
accuracy for the number of people by extracting the features
using a machine learning technique, called multiple instance
support vector machine (SVM). Therefore, based on the com-
puter vision, this research could determine the number of
pedestrians faster with a high accuracy. However, to imple-
ment their scheme, additional devices (e.g. cameras) are needed,
and quality and performance of the devices also affect the sys-
tem performance.

Lv et al. proposed a human sensing scheme via a UWB bio-
radar having multiple antennas [4]. Their system can count mul-
tiple targets (e.g. humans) through a wall or door. However, their
scheme also needed additional devices for human sensing. The
DFC can achieve the same purpose, but only uses general WiFi
devices with a COTS NIC.

Wang et al. proposed a low human-effort, device-free locali-
sation with fine-grained subcarrier information (called LiFS) [7].
LiFS is a model-based device-free localisation system. It can
localise one or two targets with the analysis of CSI signal from
many WiFi devices. The LiFS has four modules. The first mod-
ule is a CSI collection module. Before a target moves into the
monitoring area, this module collects a set of CSI measure-
ments (i.e. baseline data) from all the links. The second module
is a rough location estimation module, which detects whether
or not the target is located in the first Fresnel zone (FFZ) [15]
of a specific link by comparing the measured CSI values with
the pre-obtained baseline CSI values. The third module is a
CSI pre-processing module. If the target is located in FFZ of
a specific link, this module pre-processes the raw CSI of this
link with their scheme [7]; otherwise, LiFS uses the scheme to
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find the effective CSI using frequency diversity proposed in [6]
for pre-processing. The fourth module is a target localisation
module. This module searches for the location of the target
using a power fading model (PFM) in each link with the pre-
processed signal. Thus, this scheme introduced how to localise
a target using fine-grained subcarrier information. However,
it has a different goal from our DFC, which focuses on the
counting of the people rather than the localisation of multiple
targets (e.g. one or two targets). Our proposed DFC borrows
some of the techniques proposed by the LiFS to pre-process the
CSI signal.

Wu et al. proposed a fine-grained indoor localisation scheme
(called FILA) [6]. FILA is a new cross-layer method based on
orthogonal frequency division multiplexing (OFDM) for indoor
localisation using a wireless local area network (WLAN) [11].
To obtain fast and accurate indoor location recognition, signal
processing techniques were utilised in the time and frequency
domains to mitigate a multi-path effect, and also a fast training
algorithm was proposed for the calibration of a refined indoor
propagation model to represent the relationship between the
CSI value and distance from an access point (AP). Modification
at the transmitting end is not necessary, and only one new com-
ponent for CSI processing is introduced for positioning in the
receiving end (i.e. RX-target mobile device). The pre-requisite
for the FILA localisation system is that it must be able to export
the fine-grained subcarrier values after the normal demodula-
tion process.

Ibrahim et al. introduced a deep learning system (called
CrossCount) for DFC by WiFi RSSI information [3]. Cross-
Count counts a number of people by mapping a series of link
inter-blockage patterns in a recurrent neural network (RNN).
The system has three stages: (i) training data preparation, (ii)
long short-term memory (LSTM) RNN training module, (iii)
device-free online counting module. In particular, CrossCount
reduced labor-intensive work for collecting training data by a
new technique that only needs to collect one-person link block-
age data and produces other training data for multi-person
counting. During the online counting stage, the RSSI informa-
tion from a WiFi link is streamed into the trained LSTM RNN
to estimate person count in the area of interest.

Xue et al. suggested a multi-view deep learning framework
(called DeepMV) to recognise human activities by integrating a
variety of information such as WiFi signal, acoustic wave, and
visible light [16]. DeepMV employs a convolutional neural net-
work (CNN) module to process different features of the hetero-
geneous information. To combine the features, a hierarchically
weighted combination module is proposed so that the quality
of the information can be evaluated and the extracted features
are combined by weights. In addition, an adversarial network
is designed to separate the environment information and the
target features. DeepMV uses different information sources to
conduct human activity recognition, which can increase the sys-
tem performance. However, the devices for collecting this infor-
mation can increase deployment cost, and device failures may
undermine the system’s accuracy.

Huang et al. designed a device-free human detection and
localisation system based on radio-frequency identification

(RFID) devices [17]. The system uses RFID antennas to read
RSSI information reflected by many RFID tags sticking to walls
in a room to detect and localise a person in the room who may
block and reflect some signals between the antennas and tags.
Alternatively, Münch et al. introduced an approach that wields
Bluetooth low-energy (BLE) beacons to passively count person
numbers in a room [18]. They also used the RSSI information
collected via BLE beacons that are affected by a human body,
which is a similar concept to the RFID system.

In summary, the reviewed approaches for counting the num-
ber of people require additional devices, which can increase the
deployment cost. And more devices can also reduce the system’s
reliability, which can influence the counting performance. The
approaches using CSI data were focused on the localisation of
either targets or devices. Different from those approaches, our
DFC focuses on the counting of people by a probability model
in analysing the features of CSI signals when humans are in the
area of interest. The performance of the DFC algorithm is com-
pared with that of a baseline scheme using RSSI [1], as shown in
Section 6.

3 PROBLEM FORMULATION

In this section, we describe the formulation of our DFC system.
The DFC focuses on estimating the number of people, which
will help to minimise time and human effort in controlling elec-
tronic and electrical devices.

3.1 Concept of device-free human counting

Figure 1 shows the concept of the DFC. With this system, it
is possible to monitor that only a few people are working on
a meeting area of a top floor. The rest of the area is empty.
In this case, the unused electrical devices must be turned off
to save energy. On the other hand, on the lowest floor, that is,
working area, many people are actively working. Therefore, air
conditioners, monitors, and light bulbs should provide efficient
environment to the people. The DFC algorithm can determine
how many people are in an office or room, so the power and
operation modes of unused electronic devices can be controlled
for energy efficiency.

3.2 Assumptions

∙ The DFC focuses on counting the number of people in a LoS
link between a COTS WiFi transmitter and receiver. A non-
LoS scenario that cannot make a significant change on the
CSI signal to distinguish the number of targets is not consid-
ered in this paper. As future work, the non-LoS scenario will
be considered for human counting.

∙ To calculate the number of people, the DFC inference is
based on a probability distribution. The probability distribu-
tion can be calculated using labelled features extracted from
experiments with multiple targets.
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FIGURE 1 The concept of DFC system

3.3 Scenario

The description of an experiment scenario consists of 7 steps.
As shown in Figure 2, the procedure is as follows:

∙ We collect the fine-grained subcarrier data for feature extrac-
tion. In this process, the number of people in the link is
known. The currently collected data set of CSI includes the
information of power reduction and scattering. The raw CSI
includes the noises of the obstacles and environments.

∙ The raw CSI is pre-processed to get features. This process is
explained in detail in Section 4.2.

∙ The features (i.e. average attenuation and variation of CSI) are
extracted. The pre-processed CSI has the information about
influence by obstacles. Any other signals that are regarded
as not affected by targets are discarded in data processing
step.

∙ Through bootstrapping, a group of data is obtained to esti-
mate the probability distribution of the population. At this
step, each probability distribution is calculated for each case
when 1, 2, 3, or N persons exist in the link.

∙ The data set of CSI is collected as input from the link in order
to estimate how many people exist at a testing phase.

∙ The raw CSI data are pre-processed for counting the num-
ber of people by the collected CSI without labelling the input
data.

∙ Comparison of the extracted and unlabelled features as input
data is performed with the previously computed probability
distributions, and then a probabilistic deduction is performed
to figure out how many people are present. This estimation
process is explained in detail in Section 4.5.

4 THE DESIGN OF DFC SYSTEM

The raw fine-grained subcarrier has many noises such as fad-
ing, reflection, and scattering. To find the effect of obstacles,
we use a mathematical theory, which is called Fresnel zone [15].
This is a zone for analysing the effect of obstacles in a wireless
link. When the obstacles are located in a LoS path on a Fres-
nel zone, the signal is affected by obstacles. Therefore, when a
target is located in a Fresnel zone between a WiFi transmitter
and receiver, the collected signal indicates that some change is
caused by the target. Also, it is challenging to select the effec-
tive subcarrier indexes from raw fine-grained subcarrier infor-
mation. If the signal is attenuated, it is hard to identify what
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FIGURE 2 The procedure of DFC system

change happened to the original signal because such attenuation
is generated by either obstacles or noises. To solve this problem,
a threshold is adapted to select the subcarriers in the transition
portion, depending on whether the power reduction is enough
or not. This study borrowed some of the formulas proposed in
the LiFS [7] and FILA [6] to filter out the effective subcarrier
indexes. Additionally, we converted them to fit the DFC algo-
rithm. Finally, the DFC in a scenario with multi-targets is per-
formed.

Figure 3 shows the system configuration of the DFC. The
DFC for counting multi-targets consists of two steps, that is, a
training step and a test step. In the first step, fine-grained sub-
carriers are measured. The signal is collected while the num-
ber of people existing is noted. Then, the features (i.e. atten-
uation and variation of CSI amplitude) are extracted through
the feature extraction substep for a two-dimensional probabil-
ity distribution using two features. In the second step, the col-
lected fine-grained subcarriers are measured without knowing
how many people exist. At this time, we can estimate the num-
ber of people to compare the probability distribution from the
first step with the same features extracted from the second step.

FIGURE 3 Modules of DFC

The detailed description of our feature extraction procedure is
given in Sections 4.2, 4.3 and 4.4. Also, the detailed description
of the test step is given in Section 4.5. The next subsections
will explain the key concept and procedure of the two steps
(i.e. Feature Extraction and Test Step), respectively, as shown in
Figure 3.



342 JEONG ET AL.

4.1 Fresnel zone

The Fresnel zone is an area for analysing the effect of obstacles
(i.e. the occurrence of diffraction or interference) in the visible
range. The following equation shows the range of FFZ:

r1 =
√

(𝜆 ⋅ dit ⋅ d jt )∕di j , (1)

where di j is the distance between a transmitter (i.e. i) and
receiver (i.e. j ), dit is the distance between a target (i.e. t ) and
transmitter, d jt is the distance between a target and receiver, and
𝜆 is the wavelength of the wireless signal. Especially, a radio sig-
nal is affected by either diffraction or reflection in a wireless
communication link. The FFZ is a region with a peak point of
the field’s strength. If there is no obstacle in about 80% of the
FFZ, the loss is assumed to be equal to loss in a free space. Con-
sequently, if an additional diffraction loss occurs in the FFZ, it is
due to obstacles. It is possible to calculate the amount of power
loss except the additional diffraction in order to determine the
presence of obstacles. Also, if either an obstacle or a target is
located in the FFZ, it is possible to determine either the loca-
tion of a target or the number of targets using the PFM, which
was introduced by [7, 15]. With this mathematical theory, it is
possible to show the effect of obstacles in the FFZ. Therefore,
we adopt the threshold for the attenuation of CSI for the pre-
processing scheme.

4.2 Pre-processing scheme for the first
feature extraction

This subsection entails a pre-processing scheme for collecting
raw CSI and extracting the first feature [19, 20]. Raw CSI has
much information that includes various types of noises. But the
raw CSI cannot be used directly for either localisation or count-
ing because of noises due to scattering as well as power reduc-
tion. To find the effective subcarrier’s indexes, we use a filtering
scheme proposed by [2] for pre-processing.

If obstacles (or people) are located in the middle of a wireless
communication link, CSI amplitude is reduced because of the
diffraction and absorption caused by them. However, CSI atten-
uation occurs due to not only obstacles in FFZ, but also other
factors. Therefore, we cannot make a decision that CSI attenu-
ation occurred due to only obstacles in FFZ. We use threshold
𝛿eff to distinguish CSI changes by obstacles in FFZ from others
[2]. 𝛿eff is the average standard deviation of the CSI values mea-
sured when there are no obstacles in the communication link:

𝛿eff =
1
K

K∑
k=1

fk

f0
∗ 𝛿k, (2)

where the 𝛿k is the standard deviation of the kth subcarrier’s
amplitude [6] in free space. f0 is the central frequency and fk
is the signal frequency of the kth subcarrier. The fact that CSI

attenuation is greater than 𝛿eff suggests that there are obstacles
in the FFZ. By frequency-selective fading [2], the CSI values of
all subcarriers do not decrease in the same way even if there are
obstacles in the FFZ. The CSI values of only some subcarriers
are reduced, and these subcarriers are called effective subcarri-
ers. The CSI average attenuation of the effective subcarriers is
as follows:

ΔCSIeff =
1
|I |

∑
j∈I

f j

f0
(Fj − O j ). (3)

Let F = {F1, F2,… , FK } be the amplitudes of the fine-grained
subcarriers when a target is located on a wireless link, and O =

{O1, O2,… , OK } be the amplitudes of the fine-grained subcarri-
ers when the target is not located on the link. Therefore, a set of
effective subcarriers can be denoted as follows:

I =
{

j : Fj − O j > 𝛿eff, 1 ≤ j ≤ K
}
. (4)

The effective CSI is denoted as ΔCSIeff when a target is
placed on a link, which can be computed using Equation (3) [7].
Through this pre-processing scheme, we can determine the
effective subcarrier indexes, which are affected by obstacles, and
the corresponding CSI attenuation.

Definition 4.1. We define the weighted average of the atten-
uation of CSI amplitude of the effective subcarriers as the first
feature X1. This value indicates how much the CSI amplitude
has been reduced by obstacles such as people. The first feature
is called CSI average attenuation.

As shown in the Figure 4a, the first feature (X 1, that is, CSI
average attenuation) can be computed from the attenuation of
pre-processed CSI through the Equation (3). The two violet
lines show that some amplitude of subcarriers (i.e. indexes 4
and 26) are attenuated by targets and their attenuation are bigger
than 𝛿eff.

4.3 Procedure for second feature extraction

This subsection entails a procedure of the second feature extrac-
tion of the DFC. We estimate N people by a probability-based
approach. It is difficult to estimate the number of people in a
communication link with only one feature, that is, CSI average
attenuation. Thus, we define the second feature that is affected
by the obstacles in a communication link. Diffraction and reflec-
tion occur more in cases with obstacles in the communication
link than in cases without obstacles. The more diffraction and
reflection occur, the more the CSI value will change.

Definition 4.2. We define the weighted average of the top n
standard deviations of CSI amplitude as the second feature X2.
This value indicates how much the CSI amplitude changed by
obstacles such as people. The second feature is called CSI aver-
age variation.
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FIGURE 4 Feature extraction

The second feature (X2, that is, CSI average variation) is
defined as the weighted average of top n variations as follows:

X2 =
1

|Kn|
∑

k∈Kn

fk

f0
𝜎k, (5)

Kn = {k : 𝜎k ≥ 𝜎(n)}, (6)

where the Kn is a set of top n variations from the collected sub-
carriers, and the 𝜎(n) is nth largest variation. Figure 4b shows the
amplitude’s variation of the 13th subcarrier in the collected CSI.

4.4 Verification of features

To verify the two features in Sections 4.2 and 4.3, an experi-
ment was conducted in an indoor environment. In the test, the
distance between a transmitter and a receiver was set to 10 m
and their heights were set to 60 cm from the floor. The collec-

FIGURE 5 Feature verification experiment

tion period was set to every 0.2 s for every 5 min. To verify the
impact of the target number, the number ranges from 1 to 9
people in the communication link. Figure 5a shows the experi-
ment configuration in the indoor environment.

1) Result of feature extraction experiment : Through the
experiment, we establish each feature. Figure 5b shows a scatter
plot of the features with 9 people in a communication link in
an indoor meeting room. The x-axis is the first feature (i.e. CSI
attenuation (X1)), which can be obtained from Section 4.2. In
other words, it shows the average attenuation of a CSI subcar-
rier that is bigger than 𝛿eff. The y-axis is the second feature (i.e.
CSI variation (X2)), which can be obtained from Section 4.3. In
other words, it shows the weighted average of the top n standard
deviations of CSI amplitude.

The first feature and the second feature increase according
to the number of people. The change of features is represented
in Table 1, which indicates that our feature extraction algorithm
can find effective characteristics about raw CSI.
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TABLE 1 The change of features

Features/number 1 3 5 7 9

X1(CSI average attenuation) (dBm) 4.21 6.85 10.7 11.84 15.06

X2(CSI average variation) 0.44 1.24 4.57 4.24 8.02

FIGURE 6 Test step and probability model

2) Feature set construction : With these features, we process
bootstrapping to find the characteristics of a population. Boot-
strapping is a method that allows duplication to randomly make
a sample set from the raw data set. At this point, it can be used
to determine the probability distribution of a population even if
the measured samples are insufficient and even when the distri-
bution of the collected data sets is not clear. That is, it is possible
to make multiple data sets by the shuffling of samples for cal-
culating a probability distribution of the population. To figure
out the bootstrapped data set, data sets (i.e. raw collected signal
of N1, N2,…N8, N9) are generated by the bootstrapping 300
times. As a result, a feature set for a two-dimensional probabil-
ity model can be made to find the number of people with test
data. So far, the extraction algorithm for the features (i.e. X1 and
X2) in this study has been explained. With these features, we will
be able to estimate the number of people in the link using the
following test step.

4.5 Test step for human counting

Figure 6a shows the procedure of the test step and our prob-
ability model in DFC algorithm. To determine the number

of people in the link, we measured the CSI signal in a link
with the knowledge of the existing people. Also, a probability
model for the number of people based on statistics was created.
This model is designed as a Gaussian distribution by using the
extracted parameters (i.e. X1 and X2) through the feature extrac-
tion procedure. The input data x1, x2,… , xn are the collected
raw CSI signal of each link with N people. These input data are
changed with the number of people in the link between a WiFi
transmitter and receiver. As the number of the located people
increases, the raw CSI signal is changed dynamically by fading
and scattering. Based on this characteristic, we can estimate the
number of people to each link (i.e. F1, F2,… , Fn). Therefore, we
will be able to estimate the total number of people in an indoor
environment by summing up the number of people measured in
each link. Note that we leave the consideration of double count-
ing as future work, where the coverage of links is overlapped,
leading to double counting [21].

Probability model: This study’s probability model is as
shown in Figure 6b. First of all, xi is the input data, which is
a row vector of features x1 and x2 that are CSI average atten-
uation (X1) and CSI average variation (X2), respectively. The
probability that n people exist in the ith link given input data
xi is expressed as follows:

P (𝜔n|xi ) =
P (xi |𝜔n )P (𝜔n )

P (xi )
, (7)

where 𝜔n represents the event that n people exist in a link.
To find a probability that n people exist in the ith link given
input data xi , the P (𝜔n|xi ) in Equation (7) needs to be calcu-
lated. However, the distribution of P (𝜔n ) cannot be determined
because the number of people there is unknown. Therefore, it is
assumed that the distribution of P (𝜔n ) is uniform. Also, when
comparing the probability of each person, the probability P (xi )
is the same. Therefore, only P (xi |𝜔n ) in (7) needs to be cal-
culated. To process the maximum probability of N people, a
manipulation is done using statistics information based on fea-
tures, which are obtained by Sections 4.2 and 4.3. The probabil-
ity P (xi |𝜔n ) can be expressed using a Gaussian distribution [22]
as follows:

P (xi |𝜔n ) = (2𝜋)−
N

2 |Σn|− 1

2 exp
[
−

1
2

(xi − 𝜇n )T Σ−1
n (xi − 𝜇n )

]
,

(8)

where Σn is the covariance matrix of the average attenuation and
average variation of CSI amplitude, and 𝜇n is the mean vector
of the average attenuation and average variation of CSI when n

people exist in the link for calculating a two-dimensional Gaus-
sian distribution [22]. As a result, such a two-dimensional Gaus-
sian distribution is obtained through Equation (8) for calculating
the expected maximum probability about input data xi in order
to estimate how many people exist in the link from Equation
(7).

In addition, the DFC algorithm can support crowd detection
with multiple levels such as low, moderate, and high presence of
people. For example, in Figure 5b, we can classify three levels
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FIGURE 7 System configuration

such as low density (1–3 people), moderate density (5–7 peo-
ple), and high density (9 people) by estimating the human num-
ber with our DFC algorithm. Note that our proposed DFC uses
real-world CSI data to train a Gaussian distribution model with
two extracted features of CSI signals. The real-world CSI data
may include noises caused by environments and interferences
caused by other sources (e.g. WiFi APs and microwave ovens).
Even though raw CSI signals may include noises and interfer-
ences, the features extracted during the training step in our DFC
system are based on dominant, effective CSI signals, which miti-
gate the impact of those noises and interferences. In Section 6.3,
it is shown how much interference sources (i.e. WiFi APs with
the same WiFi channel with our DFC system) affect the perfor-
mance of our DFC system.

So far, we have explained our system design for human count-
ing. The remaining sections will describe the system configura-
tion and performance evaluation.

5 SYSTEM CONFIGURATION

This section describes the software and hardware configuration
for experiments of the DFC algorithm. For the experiments, we
prepared two laptops as a WiFi transmitter and receiver, respec-
tively. Also, we set up a desktop PC to analyse the collected raw
CSI signal.

5.1 Hardware configuration

The DFC algorithm is implemented based on the COTS Intel’s
WiFi Link 5300 NICs. The laptop model of the transmitter
is LG ZD360 installed with the ‘hostapd’ tool for configur-
ing a software-based AP [23]. To receive CSI signals from the
transmitter, another laptop is used as a receiver with the same
NIC. The receiver laptop is installed with the ‘Linux CSI Tool’
to collect CSI from the transmission link [24]. The transmit-

ter and receiver are equipped with 2.4 GHz omnidirectional, 5
dBi dipole antennas. To analyse CSI and perform the DFC algo-
rithm, a desktop PC with a 3.4 GHz CPU (Model: Intel i7-3770)
and 16 GB of memory was used. Figure 7 shows the hardware
configuration of the transmitter laptop and the mounted NIC,
respectively. Figure 7a shows a transmitter laptop with three
antennas for wireless communications. The red box in Figure 7b
shows the mounted NIC on the main board of the transmitter
laptop. Note that laptops with a pluggable Mini PCIe slot are
needed to mount the NIC. Recent laptop models do not sup-
ports the slots to accommodate the NIC. If a testing laptop
dose not have such a kind of slots, it can use a Mini PCIe to
USB adapter to run experiments.

5.2 Experiment configuration

To verify the DFC algorithm, we conducted experiments in a
typical meeting room and cafeteria at Sungkyunkwan University
in Suwon, South Korea, as shown in Figure 8. For the meet-
ing environment, a meeting room with size 1050 × 840 cm, as
shown in Figure 8a, is used and a long table is located in the
center of the room along with a number of chairs. Both a WiFi
transmitter and receiver were put at a height over 60 cm from
the floor. Two experiment scenarios, such as a static-target sce-
nario and a dynamic-target scenario, were considered in the
meeting room. The experiment was conducted with up to 10
people standing between the transmitter and receiver. The meet-
ing room case was experimented from 1 to 5 PM on a sunny day.

For the cafeteria case, as shown in Figure 8b, the experiment
was conducted in a public environment. People were sitting and
talking in the selected cafeteria. Also, there were 7 tables and
10 chairs, and the experiment was conducted from 1 to 3 PM
on a cloudy day. Since there were 3 or 4 people sitting between
the LoS range of the two antennas, the ground truth number
of people was 3. The height of the transmitter and receiver
were 40 cm over the floor. The length of the communication
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FIGURE 8 Experiment environment

link was 450 cm. The reason for the shorter height of laptops
than that in the meeting room case was that most of the peo-
ple were sitting on chairs around tables. The detailed impact of
targets’ heights is explained in Section 6.4. Note that there were
many deployed COTS WiFi APs in the building for our experi-
ments, which could affect experiment results. Each experiment
was performed by different conditions over 2 days.

For the performance evaluation, we developed a baseline
scheme using RSSI in [1], which is called ‘RSSI’ in this study.
For a fair comparison, we evaluated the proposed DFC and the
RSSI scheme on the same condition. The signal collection fre-
quency was five times per second for 5 min.

6 PERFORMANCE EVALUATION

We compare the DFC algorithm with the RSSI-based human
counting algorithm [1]. Also, tests were carried out by varying
the number of people standing in the wireless communication
link. Estimation error is defined as the difference between our esti-
mation and the ground truth for the number of people. The
results of the estimation of the number of people over time are
shown in Figures 9 and 11a. Cumulative distribution functions
(CDFs) of an estimation error are shown in Figures 10 and 11b.

6.1 Meeting room case

The testing was performed in a meeting room for statistical
analysis with both dynamic and static cases. Note that in Fig-
ure 9, the estimation frequency is from 20 to 23 s during the
measurement of 240 s, and an error bar for this estimation fre-
quency is constructed with 95% confidence interval. This vari-
able frequency is because that the CSI data collection is per-
formed until the expected number of samples are collected.
Thus, there are results about 240 s rather than 250 s.

1) Estimation result of static target(s) : Figure 9a shows
the result of the estimation of the DFC algorithm for 1, 4,
and 7 people as static target(s) where each point in each line
is the mean estimation result. According to the Figure 9a,
the static-target case has relatively unstable and less accurate
results. For example, in N = 7 case, the average of the esti-
mation result is 3.33 and the deviation of the estimation result
is 0.4.

2) Estimation result of dynamic target(s) : Figure 9b shows
the result of the estimation by the DFC algorithm for 1, 4, and
7 people as dynamic target(s). The result of a dynamic-target
scenario is better than that of a static-target scenario. The more
dynamic targets in FFZ exist, the more impact they have on
CSI. That is, the more dynamic targets exist there, the more
diffraction and reflection occur. Especially, the result of estima-
tion with 4 and 7 people is almost accurate. For example, in
N = 7 case, the average of estimation result was 6.91 and the
deviation of the estimation result is 0.46.

3) Estimation error of static target(s) : This estimation error
includes the error of the number of people in the communi-
cation link between WiFi devices, as described in Section 5.1.
Figure 10 shows the CDFs about DFC and RSSI algorithms
in the same meeting room. Figure 10a represents the CDF of
a static-target(s) experiment using both algorithms. As shown
in this figure, the probability that the estimation error of the
DFC algorithm is at most 2 is 57% in the static-target(s) sce-
nario. Also, the probability that the estimation error of the DFC
algorithm is at most 4 is 85%. The RSSI algorithm shows the
probability that the estimation error is at most 2 is 59%, and
the probability that the estimation error is at most 4 is 73%.
Note that the horizontal axis in Figure 10a is limited to 4 for
estimation error (i.e. the erroneous human number at human
counting) because 4 is enough to show that the CDF curve of
DFC is above that of RSSI. Thus, the DFC algorithm shows a
better performance than the RSSI algorithm in the static-target
case.
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FIGURE 9 Result of estimation over time

4) Estimation error of dynamic target(s) : Figure 10b rep-
resents the CDF of the dynamic-target experiment using both
algorithms. As shown in this figure, the probability that the
estimation error of the DFC algorithm is at most 2 is 79%
in the dynamic-target scenario. Also, the probability that the
estimation error of the DFC algorithm is at most 4 is 94%.
By contrast, the RSSI algorithm shows the probability that the
estimation error is at most 2 is 70% and the probability that
the estimation error is at most 4 is 79%. Note that the hor-
izontal axis in Figure 10b is also limited to 4 for estimation
error (i.e. the erroneous human number at human counting)
by the same reason described in the previous subsection. Thus,
it can be seen that DFC outperforms RSSI as the number
of moving people (especially in the dynamic-target scenario)
increases.

FIGURE 10 Cumulative distribution functions (CDFs) of both scenarios

6.2 Cafeteria case

To get a more reliable human counting result, the cafeteria case
was also tested. Section 5.2 explained the detailed description of
a cafeteria experiment environment. Figure 11 shows the exper-
iment result in the cafeteria over time. Note that in Figure 11a,
the estimation frequency is about 12.5 s during the measure-
ment of about 575 s (i.e. about 10 min), and an error bar for this
estimation frequency is constructed with 95% confidence inter-
val.

First of all, Figure 11a describes the estimation result about
collection data over time. DFC estimated 4 people existing in
the link under the ground truth 3 in the figure. This can be
caused by other people’s occasional movements that block the
LoS path of the communication link during the experiment.
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FIGURE 11 Experiment result at cafeteria

Figure 11b shows the estimation error CDFs of DFC and RSSI.
As shown in this figure, DFC has an estimation error of 2 peo-
ple with 86% probability. On the other hand, RSSI has an esti-
mation error of 2 people with 39% probability. Therefore, DFC
can provide a higher accuracy than RSSI in an indoor cafete-
ria environment.

Overall, experiment results have shown that DFC can achieve
a higher accuracy in indoor environments such as a meeting
room and cafeteria.

6.3 Impact of interference

This subsection investigates the impact of the interference of
WiFi signals, which is caused by interference sources, on the

FIGURE 12 Impact of interference links

DFC algorithm. For this investigation, we conducted an exper-
iment with up to five interference links (caused by WiFi APs
with the same WiFi channel with our DFC system) in the meet-
ing room. The five interference links are generated by five WiFi
links that are produced by five station-AP pairs. We configured
five Raspberry Pi 4 boards as five APs that use the same chan-
nel with the WiFi link for CSI data collection. The five APs
are placed beside the CSI data receiver, and the five stations
are located near the transmitter. That is, the five interference
links are parallel to the CSI data collection link for our DFC
system. During the experiment, one station associated with one
of the five APs can produce one interference link by continu-
ously pinging its connected AP. The interval of pinging is 0.5 s.
We put five people walking back and forth perpendicularly to
the WiFi links.

Figure 12 shows the estimated number of persons with the
different number of interference links (denoted by I ). When no
interference link exists (i.e. I = 0), we obtained the best perfor-
mance relatively. As the number of interference links increases,
the estimation accuracy of our DFC system decreases. However,
when three interference links exist, the estimated person num-
ber is very close to the case without any interference source.
Thus, based on Figure 12, it can be concluded that one impact of
the interference links is that the estimation accuracy is reduced,
but due to the reflection and diffraction of the interference
signals, it is hard to obtain a regular influence pattern for the
reduced accuracy. Note that the building where the meeting
room is located for our experiment has quite a number of WiFi
APs running for the campus, which may add extra interferences
to the results.

6.4 Analysis and discussion

1) Analysis of CSI and RSSI approaches : In real experiments,
the DFC algorithm achieved a higher accuracy than the RSSI-
based human counting algorithm in static/dynamic-target sce-
narios at a meeting room environment.
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The proposed DFC algorithm collects training data for esti-
mating the number of people, whereas the RSSI algorithm only
uses a mathematical model to estimate the number. One of the
reasons that the DFC algorithm can show a good performance
is that it uses real-world data to train a probability model. On the
other hand, the RSSI scheme is totally based on a sophisticated
probability model without relying on real-world data. Thus, by
collecting real-time CSI data, the DFC algorithm outperforms
the RSSI algorithm.

The RSSI and CSI signals are collected at the MAC and PHY
layers, respectively. RSSI data from the MAC layer is an aggre-
gation of PHY layer information received from the transmitter,
but CSI data from the PHY layer is generated by fast Fourier
transform (FFT)/inverse fast Fourier transform (IFFT) during
an OFDM process. Also, a CSI signal has the power information
of each subcarrier from a WiFi NIC, so it includes much richer
signal information of received data. As mentioned previously,
the RSSI and CSI can be expressed as a coarse-grained fea-
ture and a fine-grained feature of a WiFi signal, respectively [5].
Since the DFC algorithm is based on CSI having fine-grained
signal information, it can achieve a better performance than the
RSSI scheme.

2) Analysis of static and dynamic target(s) : The results in
the dynamic case are better than those in the static case because
the dynamic case makes both CSI average attenuation and vari-
ation to increase due to signal power fading (e.g. propagation
fading, diffraction fading, and target absorption fading) by the
mobility of people.

Figure 9 shows the results of the estimation of static tar-
get(s) and dynamic target(s) over time for DFC algorithm.
Also, Figure 10 shows the CDFs of the DFC and the RSSI-
based approaches. As shown in Figures 9 and 10, the dynamic-
target scenario has better performance than the static-target
scenario. This is because as the number of people increases,
the phenomenon of signal fading, attenuation, and scattering
becomes more distinct too. Figure 5 shows the distribution fea-
tures according to the target number. The features of dynamic
target(s) can be well characterised by the moving, blocking,
and attenuation of obstacles for the estimation of the number
of people.

3) Impact of height : The purpose of using FFZ theory was
to analyse the impact of obstacles for a link between two anten-
nas in a room. As described in Section 4.1, if about 80% of FFZ
is not blocked by any obstacles, the power attenuation of the
wireless signal is almost equal to that of free space. The pro-
posed DFC algorithm uses the signal reduction caused by obsta-
cles in an LoS path of FFZ. Thus, the height of APs can affect
the performance of DFC algorithm. To evaluate the impact of
the height of the transmitter and receiver, another experiment
was set up by varying the height of the laptops, such as 7, 20,
50, 80, 110, or 150 cm over the floor. In this experiment, the
height of a person standing between the antennas of the two
laptops is 180 cm. Figure 13 shows the impact of the height of
APs on the features used in DFC algorithm (i.e. CSI average
attenuation (X1) and CSI average variation (X2)). That is, Figure
13a shows the trend of the changes of CSI average attenuation
(X1 according to the height of APs, and Figure 13b shows the
trend of the changes of CSI average variation (X2) according

FIGURE 13 Impact of height on features

to the height of APs. An effective height for the experiment
can be between 70 to 110 cm as the height difference between
the AP and the person falls into this range. As shown in Fig-
ure 13, the effective and distinct impact happens between 80 to
110 cm of AP height. Therefore, the APs shall be placed at an
effective height where persons can block the LoS path of the
WiFi link.

4) Considerations on deployment : Most of buildings (e.g.
houses and offices) have WiFi devices such as public APs and
desktop computers. With these existing WiFi devices, the DFC
can estimate the number of people indoors. To cover a large
indoor area, low-cost WiFi receivers can be deployed as auxiliary
devices for the human counting. Therefore, as long as the WiFi
devices can construct and measure wireless links for CSI data
collection that can be reported to the proposed DFC system, the
DFC system can perform human counting in a cost-effective
way for a much smarter building management.

7 CONCLUSION

Here, we proposed a DFC algorithm for determining the num-
ber of people using CSI signal between a WiFi transmitter and
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receiver. The DFC algorithm uses the CSI average attenuation
and the CSI average variation to determine how many people
exist in a wireless link. With this system, energy can be saved by
controlling electronic and electrical devices more efficiently in
buildings such as companies and campuses. To verify the DFC
algorithm, we tested the static-target and dynamic-target scenar-
ios in indoor environments with 10 people. The DFC algorithm
had a good performance for human counting in indoor environ-
ments with general COTS 802.11n WiFi cards to support the
measuring CSI signal. As future work, a machine learning (ML)
technique such as SVM and deep learning will be used to train
the collected CSI signal to achieve a higher accuracy. In addi-
tion, considering the mobility and location of mobile devices
(e.g. smartphone) and static devices (e.g. desktop PCs), we will
develop a system for human counting using the temporary wire-
less links of WiFi transmitter (AP) and those devices in general
office environments.
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