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Abstract— A connected network of automated vehicles on
roads can increase the driving safety of driverless vehicles (i.e.,
autonomous vehicles). The critical level of dangerous situations on
the road while driving can be increased by the speed, orientation,
and traffic density of the vehicles involved. Therefore, there is
a need for a maneuvering mechanism that handles both the
current driving vehicle and the oncoming vehicles headed toward
an emergency zone (e.g., road hazard and road accident spot).
In this paper, we present a context-aware navigation protocol
(CNP) that enhances the safety of vehicles driving in urban
roads. Firstly, CNP includes a collision avoidance module that
builds on both vehicular networks and on-board sensors to track
vehicles’ behaviors, and this module analyzes the driving risks
to determine the necessary maneuvers in dangerous situations.
Secondly, CNP establishes a collision mitigation strategy that
limits the severity of collision damages in hazardous road during
non-maneuverable scenarios. We conducted a theoretical analysis
as well as extensive simulations to prove and evaluate the
effectiveness of CNP. The results show that CNP can reduce
communication overhead from a baseline scheme by up to 60%
while the risk of road collisions is less than 5%.

Index Terms— Autonomous vehicle, context-aware navigation,
vehicular networks, driving safety, path planning.
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I. INTRODUCTION

VEHICLE networking enables interoperability among
vehicles, drivers, pedestrians, and road network

infrastructures, which directly impacts the transportation
safety [1]. Driverless vehicle technology has attracted increas-
ing research interest in both academia and industry due to
its potential to substantially enhance vehicular transportation
in terms of accessibility, safety, and convenience. One of the
most anticipated benefits of self-driving vehicles is the lack
of a driver’s errors that lead to accidents. Human drivers
are responsible for 94% of critical events that cause crashes,
while the environment, vehicles, and unknown-related causes
cumulatively account for the remaining 6% [2]. The expected
increase in driving safety is one of the main motivations to
invest in autonomous driving research.

Although autonomous vehicles promise to improve driving
safety, they face a lack of public acceptance stemming from
safety concerns [3], [4], and significant research initiatives
have gone toward addressing those concerns. Over the past
three decades, a vehicle has reached a new technological matu-
rity with driver assistance systems (DAS) [5]. These include
driver warning systems (e.g., night vision, lane departure, and
adaptive cruise control) and automated driver-system cooper-
ation systems (e.g., low-speed automated driving and forward
collision prevention). However, human driving errors can be
fully eradicated with the introduction of autonomous driving.
Despite recent research efforts, there is still a need of safety
enabling systems for vehicles to autonomously cooperate in
assessing driving risk outside of the line of collision. These
systems need to safely guide vehicles to avoid collisions in
the road without jeopardizing their safety and with minimal
or no effect on their overall trajectory. A system that integrates
road infrastructures with vehicles to have computing, commu-
nication and control abilities is commonly known as vehicular
cyber-physical system (VCPS) [6].

This paper presents a context-aware navigation protocol
(CNP) to increase driving safety in VCPS. The CNP is a
protocol that solves a complex urban driving scenario as
shown in Fig. 1(a). When a vehicle abruptly stops in the
middle of a lane, it creates an unexpected driving situation
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Fig. 1. An illustration of the driving complexity with the presence of an obstacle in a roadway.

for any following vehicles. The reaction of e1 may impact
the driving of either e2, l1 or r1, which in turn will need
to react, thereby creating a more complex driving scenario.
We name “emergency zone” the part of the road where the
vehicles need to maneuver to bypass an obstacle and those
vehicles are “emergency vehicles”. This system distinguishes
two classes of emergency vehicles. A directly concerned
vehicle e1 is emergency class 1 while indirectly affected ones
are emergency class 2.

Through modular steps described in Fig. 1(b), CNP provides
a relevant driving solution for vehicles driving in hazardous
situations. First, a data sensing which consists of sending
and receiving the self-sensed and remote-sensed mobility
information according to the CNP communication protocol
described in Section IV-A. Second, a risk assessment which
analyzes the received data to identify the abnormal behavior
in the driving environment and collision avoidance modalities.
Third, a path maneuver that defines the appropriate trajectories
changes either longitudinally or laterally across the road for
the concerned vehicles. Lastly, a path tracking, which keeps
the maneuver path until the maneuvered vehicle reaches the
target without deviation. The path maneuvers are shared with
the neighbors via communication for the awareness purpose.

The major contributions of this work are summarized as
follows:
• The design of networked context awareness navigation

protocol (CNP): It is a protocol that uses an IPv6 Neigh-
bor Discovery (ND) option to convey vehicles’ mobility
information. This protocol enables cooperative sensing
through light-weight message sharing. It renders ambient
awareness by quickly analyzing sensed data to determine
anomalous behaviors such as abrupt slowing and sudden
lane changes. Upon the detection of emergency risks, the
CNP takes further measures to quickly adjust a vehicle’s
trajectory (see Section IV).

• Lane quality-based collision avoidance: We develop
a lane metric indicating the state of lane collision risk
prior to emergency vehicle maneuver decision. It permits
vehicles to maneuver towards the safest lane and lets their
maneuver have the minimal impact on the overall road
safety. Through the probabilistic collision risk assess-
ment, we deduce the best maneuver for a vehicle in risk
of collision with an obstacle in the road (see Section IV).

• A simulation-based evaluation of the proposed model:
In order to demonstrate the efficiency and usefulness

of the proposed model in this paper, we implemented
a vehicular simulation and evaluated it under various
conditions. The evaluation results show that the CNP can
reduce the risk of collision with a little communication
overhead compared to the baselines (see Section V).

Note that this is an improvement of the preliminary work
presented in our previous paper [7].

The rest of this paper is organized as follows. Section II
summarizes the previous work related to our study. Section III
makes the notation definitions and assumptions used in this
paper, and defines the problem that this work solves as well.
Our network-based vehicle tracking mechanism is described in
details in Section IV. Section V validates our CNP mechanism
by comparing it with other sensing and tracking mecha-
nisms. Finally, we conclude this paper along with future work
in Section VI.

II. RELATED WORK

This section summarizes the previous work focusing on the
driving safety for connected and automated vehicles.

Beginning with the DARPA urban challenge in 2007 [8],
several studies have attempted to design autonomous vehicles
that can be used in real driving. Autonomous vehicles can
make meaningful assessments according to the significance of
any perceived data, and they can also predict future events
and make proactive decisions to avoid accidents [9]. Proper
awareness and assessment mechanisms are needed to respond
to the wide variety of situations that arise in real road traffic.

To avoid collisions in autonomous driving, several mecha-
nisms have been proposed, including both sensor-based and
non-sensor-based approaches. A typical sensor-based mech-
anism is the lane-level beacon-less, infrastructure-less, and
GPS-less cooperative collision avoidance (BIG-CCA) frame-
work proposed by Chen and Chou [10]. This mechanism uses
V2V communication to warn vehicles in the same lane of any
danger. Another model proposed by [11] uses a platooning par-
adigm to model accidents involving a platoon equipped with a
warning notification system. A parallel autonomy framework
uses a nonlinear model predictive control to compute a safe
trajectory for an automated vehicle based on human input [12].
The cooperative collision avoidance (CCA) systems enable
vehicles to cooperate to achieve driving safety.

CCA mechanisms include platooning [13], a networked
collision avoidance system [14], an agent-based situational
assessment [15], and a feature-based cooperative perception

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 19,2022 at 01:29:07 UTC from IEEE Xplore.  Restrictions apply. 



MUGABARIGIRA et al.: CONTEXT-AWARE NAVIGATION PROTOCOL FOR SAFE DRIVING IN VEHICULAR CYBER-PHYSICAL SYSTEMS 3

Fig. 2. A target model for handling an emergency situation with CNP.

framework (F-Cooper) [16]. In the platooning, vehicles
follow the same route and drive closely enabling them to
cooperate through low latency data delivery. The networked
collision avoidance system (NCAS) allows vehicles to work
together by broadcasting driving information over a shared
channel. A central controller collects the driving data and
manages vehicles that behave according to an agent-based
modeling [15]. F-Cooper is an object detection model that
was proposed to remedy the limitations caused by network
bandwidth and the constraints of autonomous applications. The
cooperative adaptive cruise control proposed by [17] regulates
the interdistance between vehicles to achieve string stability
in a networked control system.

Junietz et al. studied an approach to define the criticality
metrics that validate the safety of automated driving [18].
Using the model predictive control (MPC), they define the
driving required in a specific situation for real time trajectory
planning and control. Feng et al. reduced the required testing
miles required to validate the driving safety performance
in autonomous vehicles by adversarial adjustments to the
naturalistic driving environment [19]. The model predictive
instantaneous safety proposed by [20] analyzes the closeness
to collision to guarantee safety in terms of time to collision.
Li et al. proposed a collision avoidance (CA)-based risk
assessment where metrics such as time to collision, time to
stop, and time to react are combined to define the safety
status of driving vehicles [21]. Unlike the prior models,
our context-aware navigation protocol provides a possibility
to preemptively avoid collision with out-of-sight obstacles
through wireless communication by guiding them towards a
safe lane. The CNP includes an emergency path planning
and tracking strategy based on a minimal contour tracking
algorithm proposed in [22] to define the path maneuver for
vehicles both in line-of-sight and out-of-sight of the obstacle
in the road.

III. PROBLEM FORMULATION

We designed the CNP with two-fold safety oriented objec-
tive such as collision avoidance and collision mitigation.
The collision avoidance model ensures that the autonomous

vehicles drive safely when they are faced with obstacle(s) in
a road segment. Meanwhile, the collision mitigation model,
which is proposed by this paper, guarantees a minimal colli-
sion impact for unavoidable accident scenarios. In this section,
we describe in detail the notations, assumptions, and the
problem targeted by our model.

A. Notation Definitions

Fig. 2 shows a networked emergency processing architec-
ture. In this paper, we adopt a communication protocol wherein
vehicles are grouped into m clusters C = {C1, C2, . . . , Cm};
the cluster head (CH) is the leader of the cluster. Our model
uses the K-mean clustering approach [23] where CH is a
cluster-head vehicle which makes the smallest intracluster
Euclidean distance from its cluster members. CHs share
driving information with each other via Vehicle-to-Vehicle
(V2V) communication. Meanwhile, the Traffic Control Center
(TCC) maintains traffic statistics and communicates with the
vehicles via Vehicle-to-Infrastructure (V2I) communication.

Let an emergency event be any unusual behavior that
happens on the road that degrades the safety of vehicles. The
emergency driving process described in Fig. 2, which avoids
collisions of vehicles, consists of the following steps:
Step 1: An emergency event suddenly occurs in the road

becoming a driving obstacle.
Step 2: A cluster member detects and broadcasts the obstacle

information to its neighbors.
Step 3: The CH receives and evaluates this information,

to identify the obstacle collision risk. It calculates a
required maneuver for each vulnerable member.

Step 4: The CH then informs the members in step 3 of the
obstacles and the appropriate maneuvers.

Step 5: The safety information is shared with neighboring
clusters via their CHs.

Step 6: Each CH will take proactive steps to address any
safety issues.

Step 7: Through V2I communication, the TCC receives and
maintains up-to-date global mobility statistics and
calculates safe trajectories for vehicles in the road
network.
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Now we formulate equations and functions for our CNP. The
nodes in vehicular ad hoc networks (VANET) follow a very
well-structured path organized in roads and their sub-roads,
or lanes. CNP considers a road segment ei j with the number
of lanes l > 1, where N vehicles in a set V are traversing the
road segment from entrance i toward exit j intersections at a
particular instant time t . At time t , a vehicle ni , i = {1, . . . , N}
state is defined as

s = [
xi yi vi θi

]T
, (1)

where (xi , yi ) is its position, vi is its speed, θi is its moving
direction, and its trajectory control input is defined as

u = [
ρi ai

]T
, (2)

where the steering angle is ρi and acceleration is ai . For a vehi-
cle with a distance L between two axles of a wheelbase [22],
its θi can be derived by

θ̇i = vi

L
tan(ρi ). (3)

The dynamic that specifies ni ’s future behavior is defined by
the following nonlinear differential equation:

ṡ = f (s, u(t)). (4)

A vehicle at risk of collision is an emergency vehicle, nem ,
and the one it is about to collide with is an obstacle, nob.
A lane where nem is positioned is an emergency lane, L E .
The nob can either be moving (i.e., moving extremely slowly)
or resting (i.e., completely stopped). A resting obstacle can
only be defined by its position

[
xob yob

]T
.

B. Assumptions

We take into consideration the following assumptions in our
CNP, which investigates the traffic flow λ for a road segment
in a defined time slot:
• Each vehicle is allowed to share both local and remote

kinematics information.
• Periodically, each vehicle broadcasts its own mobility

information, such as speed, direction, and position, which
allows the cluster header to identify its kinematics in real
time.

• CNP assumes that a non-sliding vehicle’s wheels roll
with non-holonomic constraints, thus allowing a vehicle’s
maneuvers to be defined without the impacts of friction.

• Vehicles in a road segment are assumed to be moving in
the same direction from intersections i → j or at rest.
A vehicle is said to be at rest when its speed v = 0.

• An acceleration of a vehicle a has a minimum and
maximum bound, i.e., a ∈ [amin, amax ], where amin and
amax are the lowest and highest accelerations attainable
by a vehicle, respectively.

• A steering angle of a vehicle ρ has a minimal and
maximum bound, i.e., ρ ∈ [ρmin , ρmax ], where ρmin and
ρmax are the minimal and maximal angles, respectively,
that a vehicle can steer its wheels.

Fig. 3. A collision probability graph for an emergency vehicle.

C. Problem Definition

1) Emergency Driving Handler: We illustrate a road net-
work as a graph G = (V, E, c) constructed by a set of vehicles
V that defines the vertices, and a set of edges E with a cost
equivalent to the collision risk associated with a neighboring
vehicle. The function c : E → W assigns the cost to each
edge as shown in Fig. 3. Given a graph G = (V, E, c), CNP
computes a feasible lateral driving path for a vehicle when an
obstacle is identified in its safe driving direction.

Problem 1 (Emergency Path Planning Problem): It
consists of determining a path Pem for a vehicle ni ∈ V such
that the collision probability Pcol associated with the relative
kinematics of adjacent vehicles shall always be low during
the entire maneuver time �t .

Let v p(t) be the speed of the front vehicle n p (called the
parent vehicle) driving or resting ahead and vc(t) be the speed
of the following vehicle nc (called the child vehicle) at time t .
Let �t be the required maneuver change time of the following
vehicle nc. Let β be the Euclidean distance between vehicle
n p and nc.

The collision probability Pcol for two vehicles n p and nc

during a maneuver time �t is calculated as

Pcol

[∫ t+�t

t
v(t) dt + εv ≥ β

]
, (5)

where v(t) = |vc(t) − v p(t)| is the relative speed, and
εv ∼ N (0, σ ) is the speed measurement error, σ =
{1, 2, 3, . . . , 10} km/h. The trajectory distance di (t) of an
emergency vehicle ni during the maneuver process is
defined as

di (t) =
∫ t+�t

t

{
v(t) +

∫ τ

t

(
ai u + εa

)
du

}
dt, (6)

where v(t) is the speed function, u is the maneuver control
input according to (2), a is the acceleration, and εa is the
acceleration error at time t .

2) NP-Hardness of Emergency Driving Problem: The solu-
tion of Problem 1 defines a safe path of nE

1 in a situation
shown by Fig. 4(a). The forward driving of nE

1 will collide
with an obstacle nob and can collide with nE

2 if it abruptly
slows its speed down. Moving to the left lane can cause a
collision with nL

1 and its maneuvers to the right lane can cause
a collision with nR

1 . Whatever the driving decision of nE
1 is,

it can affect the maneuver of at least one among its adjacent
vehicles. Suppose that nE

1 moves to the left lane by stimulating
the neighbor nL

1 ’s maneuver decision. Any maneuver of nL
1

should also consider the kinematics of its adjacent vehicles nE
2
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Fig. 4. An illustration of NP-Hardness for the emergency driving problem.

and nL
2 . Those decisions can also result in the involvement of

exponentially large-space searching to find out a safest path
for each vehicle in either a road segment or intersection.

Given a sequence of vehicles, each at the risk of colliding
with neighbors, the decision-making problem to find vehicles’
safe maneuvers is an NP-complete problem. Assume that the
road ei j is a thief’s bag with three layers BL , BE , and BR

each with capacity n, respectively, representing the left lane
of the emergency lane, the emergency lane and the right lane
of the emergency lane, as shown in Fig 4(b). We demonstrate
that the knapsack problem [24] in Fig. 4(b) is a special case
of the emergency path planning problem in Fig. 4(a). The
knapsack problem is a well-known NP-complete problem.
It is infeasible to find a polynomial-time algorithm that can
safely control the maneuvering of many vehicles on the road.
By knowing the safe lane quality among adjacent vehicles
(defined in Section IV-C) as a weight for knapsack, linear
program (LP) relaxation can alleviate the difficulty of the
problem of emergency maneuver decision. The emergency
driving decisions set S∗ that maximizes the safe driving profit,
is defined as function

f : V → B

such that S∗ ← arg max
N∑

i=1

Si , (7)

where Si is the safe lane quality of each vehicle as a safety
metric in the maneuver lane computed according to (12)
and (13) in Section IV-C.

3) Minimized Collision Scenario: Our approach minimizes
the collision impact in two ways. First, we ensure that the col-
liding vehicles crash with as little energy transfer as possible.
Second, we minimize the number of vehicles affected by this
accident through collaborative maneuver control.

Problem 2 (Collision impact minimization problem):
When a child vehicle nc detects a dangerous situation that
is too close to be avoided, the collision impact shall be
minimized so that the involved vehicles may suffer minimal
damage.

Equivalent Energy Speed (EES) [25] is computed as fol-
lows when a child vehicle nc collides with a front, parent
vehicle n p:

E E S = v̂c − vc = 2m p

mc + m p
(v p − vc), (8)

where mc and m p are the masses of nc and n p , respectively,
vc and v p are the speeds of nc and n p , respectively, and v̂c is
the speed of nc after collision, i.e., resultant speed.

Fig. 5. Cluster-head-coordinated dynamic maneuver planning.

In Section IV, we discuss how our scheme computes the
road collision risks and deduces the proper maneuvers.

IV. SENSING AND PERCEPTION MODULE

A. CNP Communication Protocol

The proposed CNP enhances driving safety by offering a
light-weight driving information sharing method. This model
has two types of messages that serve as IPv6 neighbor discov-
ery (ND) options for the CNP services: the cooperation context
message (CCM) and the emergency context message (ECM).
CCM enables cooperative driving through the exchange of
a vehicle’s mobility information (e.g., speed, position, and
direction) and its driving actions (e.g., braking and acceler-
ating) with its neighbors. ECM notifies a vehicle’s neighbors
of emergency situations (e.g., accidents). This protocol gives
higher priority to the ECM than the CCM in the message
delivery process of vehicles.

Due to ECM’s higher priority than CCM, a vehicle can
take immediate action in response to an emergency situation.
As shown in Fig. 5, if there is an obstacle in a road, an ECM
message is sent to adjacent vehicles via a channel for safety
purposes. We advocate the use of multiple DSRC service
channels that prioritize ECM safety messages. We employ
vehicle clustering wherein cluster head (CH) leads cluster
members’ safety decisions. CH orchestrates the emergency
maneuvers of its members to avoid collisions. Both CCM and
ECM transmissions are performed with IPv6 packets in IEEE
standard 802.11-OCB network mode [26]. The members’
maneuvering plans are decided by a collision probability based
risk assessment which will be defined in Section IV-B.

B. Probabilistic Risk Assessment

Dynamic road traffic participants drive within uncertain
locations, directions, and speeds. The maneuvering decisions
of a vehicle in such a road are computationally uncertain.
The CNP determines the appropriate maneuverable driving
lane depending on the collision probability of the emergency
vehicle.

We define the “collision probability” as the risk that a
moving vehicle will collide with an obstacle ahead in a road.
The collision risk is generally calculated as time to collision
Tc through the relative kinematics of adjacent vehicles on
the road [25]. The minimal maneuverable time to collision
Tcmin is reached when a vehicle maximally accelerates toward
the obstacle, and the maximal maneuverable time to collision
Tcmax is when it minimally accelerates (i.e., maximally decel-
erates) toward the obstacle. Considering that the collision risk

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on October 19,2022 at 01:29:07 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

of an nem is uniformly distributed within Tc ∈ [Tcmin, Tcmax ].
The collision probability that an nem will collide with nob is
computed as follows:

P(nc ⊗ n p) =

⎧⎪⎨
⎪⎩

1, if Tc ≤ Tcmin , (9a)

0, if Tc ≥ Tcmax , (9b)

Pc,p, otherwise, (9c)

where (9a) means that a child vehicle nc will certainly
collide with its parent vehicle n p , (9b) suggests that nc is
safely driving away toward n p , and (9c) defines a collision
probability (denoted as Pc,p) that nc is driving toward n p

which is computed as follows:

Pc,p = 1−
(

Tc − Tcmin

Tcmax − Tcmin

)
. (10)

Vehicles in an emergency driving situation can collide with
other vehicles not only in a line-of-sight unsafe range, but
also in a non-line-of-sight but unsafe range [27]. Consider
an emergency vehicle nE

1 driving towards nob as shown in

Fig. 3. Let VL = {nL
1 , nL

2 , . . . , nL
u }, VE = {nE

1 , nE
2 , . . . , nE

v },
and VR = {nR

1 , nR
2 , . . . , nR

w} be vehicles sets in the left
L L , emergency L E , and right L R lanes respectively. The
emergency graph G depicted in Fig. 3 enables the CH to
determine the lateral maneuver of nE

1 toward the least-risk
lane, which is a lane with the minimum collision probability.

C. Link Quality-Based Maneuver Lane Selection

Considering the collision risk events (nL
1 ⊗ nE

1 ),
(nL

2 ⊗ nL
1 ), . . . , (nL

u ⊗ nL
u−1), respectively, for children

nL
1 , nL

2 , nL
3 , . . . , nL

u to collide with their parents nE
1 , nL

1 ,

nL
2 , . . . , nL

u−1, let their corresponding probabilities be p1,
p2, . . . , pu . Let the events (nR

1 ⊗ nE
1 ), (nR

2 ⊗ nR
1 ), . . . ,

(nE
w−1 ⊗ nR

w), respectively, for children nR
1 , nR

2 , nR
3 , . . . , nR

w

to collide with their parents be nE
1 , nR

1 , nR
2 , . . . , nR

w−1 and
let their corresponding probabilities be p′1, p′2, . . . , p′w. The
nE

1 maneuvers toward a lane with better quality. Let the safe
probability qi of a vehicle nc driving toward another vehicle
n p be

qi = 1− pi , (11)

where pi is the collision probability of event (n p ⊗ nc).
Consequently, we deduce the safe lane quality of every lane
of the road.

Definition 1 (Safe Lane Quality): Let the Safe Lane Qual-
ity SLx of a given road lane Lx be a lane metric that indicates
the state of lane safety during the emergency driving decision.
The safe lane quality of the left lane will be computed as
follows:

SL =
u∏

i=1

qi , (12)

and the safe lane quality towards the right lane is compu-
ted as:

SR =
w∏

i=1

q ′i , (13)

Algorithm 1 Emergency Maneuver Lane Determination
1: function DETERMINE_MANEUVER_LANE(G = V, E) �

G is the graph constructed by a set of vehicles V where
each vehicle is identified by its position and speed

2: n p ← nE
1 � initialize the parent node n p to the vehicle

nE
1 most risky to collide with nob

3: for each vertex v in Vnp do� Vnp is the vertexes set of
n p’s children

4: if nc �= null then � Compute the edge cost when
the current vertex has a predecessor

5: Tc ← Compute_T ime_T o_Colli sion(nc, n p)
6: Pc,p ← Compute_Probabili ty(Tc)
7: nc.p ← Pc,p � Assign the collision probability as

the metric of each graph edge cost
8: end if
9: end for

10: Lx ← 0 � Candidate maneuver lane index which
varies from 0 to 2 for a three-lane road segment

11: Qlane ← 0 � Maneuvers toward the lane which has
the greatest value of lane quality Qlane

12: for each lane l in L do � L
is a set of road lanes and check the neighboring lanes of
the defected lane that may be two elements (right and left
lanes), or only one lane side

13: Ql ← Calculate_Lane_Quali ty(V)
14: if Qlane < Ql then
15: Qlane ← Ql

16: Lx ← l
17: end if
18: end for
19: return Lx

20: end function

where qi is the safe probability for n p and nc in the left lane,
and q ′i is the safe probability for n p and nc in the right lane.

An nE
1 ’s collision avoidance maneuver follows the

algorithm 1. Line 2 of Algorithm 1 initializes the parent node
with nE

1 . The while loop in lines 3-9 assesses the risks of the
graph G nodes with the parent-child relationship. Lines 4-8
calculate the collision risks among the adjacent vertices, and
then assign a risk cost to the edge (nc, n p) in terms of
collision probability according to (10). Lines 10-11 initialize
the maneuver safe lane cost and nE

1 should maneuver to the
lane with maximal safety. Lines 2-18 determine and compare
lane qualities to choose the best lane. nE

1 will steer toward the
lane returned by line 19.

Given the safe lane qualities SL and SR in the left and
right lanes respectively, the decision of the lane (denoted
as L∗x ) for maneuvering emergency vehicles in adjacent lanes
is computed as follows:

L∗x ← max
Lx∈{L ,E,R}(SL , SE , SR). (14)

Calculating an emergency vehicle’s maneuvers is time criti-
cal. The complexity of the CNP maneuver planning algorithm
is O(Nl). This complexity increases with the number of
vehicles N driving in the defective road and the number
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Fig. 6. Expansion of a collision probability graph for an emergency vehicle
nE

1 toward the left lane Ll having multiple vehicles.

lanes l. To remedy this, we make a trade-off between the
optimal risk assessment and the assessment time.

Fig. 6 illustrates a scenario for lane change of an nE
1

avoiding collision with nob. Considering it maneuvers towards
the left lane, Fig. 6 shows possible scenarios that may arise.

• In Fig. 6(a), nE
1 bypasses nob without affecting the trajec-

tory planning of existing vehicles on the maneuver lane.
This often happens on roads with low vehicle density.

• In Fig. 6(b), nE
1 bypasses nob by affecting only the

trajectory of its adjacent vehicles. This typically happens
when vehicle nL

1 needs to either accelerate, decelerate or
change lane in order to create enough space for nE

1 to
avoid an accident.

• In Fig. 6(c), nE
1 affects the trajectories of multiple adja-

cent vehicles when bypassing nob.

The following section will discuss in detail how the CNP plans
emergency paths for vehicles.

D. Emergency Maneuver

1) Emergency Path: Vehicles are sequentially maneuvered
to avoid accidents in the road. Sequentially within the maneu-
ver lane, CNP assesses the collision risk to make sure that an
emergency vehicle nem will safely access the lane without
degrading the safety of the existing driving vehicles. CNP
handles emergency driving, starting with the closest vehicle to
the obstacle toward the rear vehicles. CNP defines the timely
maneuver path of nem from its contour area, in a way that guar-
antees the other vehicles’ safety. Please refer to Appendix A,
available in the online supplemental material, for the detailed
path maneuver. Vehicles are laterally maneuvered to avoid any
possible collisions with an obstacle nob. Longitudinal changes
are only made when lateral maneuvers are not feasible toward
other lanes. In the case of a reckless cut-in maneuver, our
CNP mechanism will enable a vehicle to identify such an
obstacle and quickly broadcast it among the driving vehicles,
thus creating a preparedness to react to it. We prioritize
the maneuver by changing lanes to enable vehicles to keep
on their trajectories despite the obstacle in the road. How-
ever, for non-maneuverable vehicles, we enable vehicles to
break or collide with as small energy as possible to limit
damages.

TABLE I

SIMULATION CONFIGURATION

2) Collision Strength Minimization: For the unavoidable
collision situation, a collision strength minimization mech-
anism is needed to minimize the energy transfer between
the colliding vehicles, thus reducing damages. The severity
of a collision is proportional to the masses of two colliding
vehicles and their corresponding speeds. Assuming that an
emergency vehicle nem with speed vem and mass mem collides
with an obstacle nob with speed vob and mass mob, the
collision strength calculation is made using their Equivalent
Energy Speed (EES) [25] calculated according to (8). The
derivation of the collision strength minimization can be found
in Appendix B, available in the online supplemental material.

Up to now, we have described in detail the theoretical
mechanism of the CNP. In the next section, we will explore
the performance evaluation.

V. PERFORMANCE EVALUATION AND

SIMULATION RESULTS

This section evaluates the performance of CNP risk assess-
ment mechanism. It compares the performance of CNP with
other communication mechanisms in terms of communica-
tion overhead. It evaluates the performance of CNP safety
mechanism in terms of collision risk reductions. It assesses
the collision mitigation by the equivalent energy speed and
the number of colliding vehicles. We carried a simulation
implementation to evaluate CNP performance.

A. Simulation Setup

To be able to evaluate the correctness and efficiency of
this scheme, we conducted a simulation with the simulation
of urban mobility (SUMO) [28] and OMNeT++ simulation
framework [29]. We made an urban mobility simulation where
multiple vehicles are traversing in a road and exchange the
mobility information for safety purpose. With OMNeT++,
we simulated CNP centralized network communication. Vehi-
cles exchange the Emergency Context Messages (ECM) as
WAVE Short Messages (WSM) within an IEEE.11-OCB
enabled network simulation environment. Table I lists the
simulation configuration parameters.

To allow SUMO to meet the demands of the CNP mech-
anism, we modified the SL2015 [30] lane changing mecha-
nism to comply with the coordinated maneuver mechanism.
We extended Krauss’ car following model and SUMO lane
changing strategy that enables both the collisions to occur
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Fig. 7. Impact of the number of considered hops on the lane quality.

Fig. 8. Impact of CNP on communication overhead.

when not avoided. For collision avoidance, an increased lat-
eral resolution for sublanes in SUMO allows realistic lane
changes of vehicles. Through a communication strategy in our
proposal, vehicles get informed of the existence of obstacles
and can preemptively maneuver prior to reaching a high
collision risk.

B. Performance Parameters and Metrics

The evaluation of this mechanism is based on the following
evaluation settings.
• Parameters: The parameters for evaluation are: the

impact of (i) vehicle injection rate (λ), (ii) maximum
driving speed, and (iii) acceleration.

• Metrics: The metrics for evaluation are: the communi-
cation overhead to measure the communication perfor-
mance, the collision probability to measure collision risk,
the number of collisions, and the collision equivalent
energy speed as metrics for collision strengths.

• Baselines: We compare CNP with legacy situa-
tional awareness, which are sensor-based approach
(e.g., LIDAR), a collision avoidance (CA) based [21], and
a networked approach (e.g., NCAS [14]). Unlike CNP
and NCAS, the sensor detects the situation only in the
Line-of-collision (LOC) of vehicles.

To test the performance of the CNP, we use a road segment
with three lanes. Our simulation results use a 95% confidence
interval.

C. Simulation Results

1) Lane Quality: This section investigates the safe lane
quality (mentioned as lane quality) of the CNP, which is
defined by Definition 1, by measuring the impact of the
number of hops that were taken into account in the CNP’s

risk assessment calculation on the lane quality. To determine
the quality of the lane driving, we evaluate the impact of the
hop number on collision probability considering the different
number of hops in the lane. First, consider only vehicles within
the LOC of nE

1 , and then consider two hops away from nE
1 ,

and then three hops away, and so on.
Fig. 7(a) shows that for both the vehicle injection rates,

the risk of collision is high if the CNP assesses the risk
only to its neighbors. The greater the number of vehicles
in the lane that are considered by the risk assessment is,
the lower the risk of collision is. Similarly, as shown in
Fig. 7(b), considering a small number of vehicles in the CNP
risk assessment will result in poor safe lane quality. Higher
injection rates (e.g., λ = 1) result in poorer safe lane quality as
road congestion increases. Assessing up to 3 hops can ensure
adequate safe lane quality and less complex calculations. This
gives a collision probability equivalent to 0.15 for λ = 1 and
one equivalent to 0.11 for λ = 0.5. Their safe lane qualities
are 0.13 and 0.5, respectively, which is safe enough to limit
the risk of a chain of collisions.

2) Communication Control Overhead: Both CNP and
NCAS are communication-based mechanisms to avoid crashes
in vehicular networks. Unlike NCAS, CNP uses a coordinated
communication protocol and CH is the orchestrator of the
remaining CMs’ maneuvers. Fig. 8(a) shows the evaluation
of communication overhead in a vehicular networks wherein
vehicles drive at 80km/h and are injected at injection rate
λ ∈ [0.2 0.8]. The results show that CNP reduces the com-
munication overhead caused by NCAS from 15% to 60%.
Fig. 8(b) shows an overhead comparison figure where vehicles
drive with maximum speeds varying from 20 to 140km/h
while maintaining an injection rate of 0.6. The results shows
that CNP reduces the overhead caused by the NCAS commu-
nication control by up to 60%.
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Fig. 9. Impact of injection rate (λ).

Fig. 10. Impact of speed.

3) Impact of the Vehicles Injection Rate λ: This section
investigates the impact of vehicle injection rate λ on the overall
CNP performance compared with the baselines. It is seen that
CNP reduces the risks of vehicles colliding with an obstacle.
Fig. 9(a) shows that over time, on average, the risk of colliding
either with obstacles or other vehicles in CNP is always the
smallest. For unavoidable crashes, Fig. 9(b) shows that CNP
has the smallest number of collisions at all injection rates.
At higher injection rates, the number of sensor-based collisions
in the presence of obstacles will be greater than the collisions
found with both communication mechanisms (i.e., CNP and
NCAS). Another factor that measures the nature of collisions is
the energy transfer between collision nodes (including vehicles
and obstacles), which is measured by EES.

Fig. 9(c) shows that in most cases, the cumulative energy
when CNP is applied is lower than that found only by
relying on sensor-based approach (Sensor) and equivalent to
the benefits of NCAS. The smaller the EES, the lighter the
collision which reduces the accident casualties. As shown
in Fig. 9, the overall results indicate that CNP outperforms
the sensor-based approach on all levels of tested injection
rates.

4) Impact of Speed: To investigate the impact of speed,
we set different speed limits in the range from 20km/h to
140km/h and fixed the injection rate to 0.6 and tested the
behavior of CNP in comparison with the baselines. Fig. 10
shows the evaluation of collision risks when there is an
obstacle on the road. For all speeds, the CNP outperforms the
sensor and NCAS approaches in terms of the three metrics
such as collision probability, the number of collisions, and
collision strength. The collision probability with CNP is 5%
less than NCAS while it grows to 85% of sensor-based
approach as depicted by Fig. 10(a). On average, CNP reduces
5% of the chances of collisions of NCAS, and 80% of those
of the sensor-based risk assessment.

Fig. 11. Impact of acceleration.

Fig. 10(b) shows that CNP outperforms the sensor-based
approach in the reduction of the number of possible collisions.
At all speeds, CNP has fewer or the same number of vehicle
collisions compared with the NCAS’s, and much fewer than
the sensor-based approach. For speeds greater than 60km/h,
the number of possible collisions when using the sensor
risk assessment is much higher than those of the CNP and
NCAS, showing that network-based risk assessments have
better performance. CNP has the lightest collisions compared
to the baseline as shown in Fig 10(c).

5) Impact of Acceleration: We investigated the impact of
acceleration/deceleration by testing accelerations/decelerations
that vary from |1|m/s2 to |6|m/s2 in Table I. The results in
Fig. 11 show that the lower acceleration leads to the higher
safety. That is, the safety weakens with the increase of accel-
eration. For all the acceleration scenarios, CNP outperforms
other the compared risk assessment methods.

D. Discussion

The communication protocol in CNP was simulated accord-
ing to the 802.11p standard. This protocol needs the vehicles
to respond to the driving environments in a timely manner
and to handle complex driving functions. For this to be
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possible, a powerful computational system capacity which
enables vehicles to collaborate with each other is required.

The standardization of 802.11p and 3GPP have substantially
improved the robustness and reliability of vehicular networks,
thus it allows them to communicate with each other without
an infrastructure. However, a limited processing speed would
lead to inaccurate decisions. Intel Corp. estimates that approx-
imately 1 GB of data needs to be processed each second in
the car for collaborative driving [31]. Vehicles with graphics
processing units (GPUs) for computation acceleration can
handle such cognitive processing loads efficiently.

VI. CONCLUSION

This paper introduced a context-aware navigation protocol
(called CNP) to enhance the driving safety of vehicles moving
in urban roads. The CNP’s collision avoidance feature allows
vehicles to drive safely in the presence of obstacles or acci-
dents in the road by perceiving the situation and determining
safe paths to follow. If a collision occurs, collision mitigation
minimizes any damage. The simulation results have shown that
CNP outperforms the sensor-based approach in reducing the
risks of collisions, the number of collisions, and the strength
of collisions.

As future work, we will enhance our collision probability
computation, considering the reaction time of a vehicle. Also,
we will implement and test this CNP protocol on real cars to
improve its accuracy and usability for safe driving. We will
also test the impact of the CNP on the overall trajectory
performance of the driving vehicles as another way to test
and improve the navigation efficiency.
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